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Abstract. A reliable and accurate load forecasting method is key to successful energy
management of smart grids. Due to the non-linear relations in data generating process and
data availability issues, load forecasting remains a challenging task. Here, we investigate the
application of feed forward artificial neural networks, recurrent neural networks and cross-
learning methods for day-ahead and three days-ahead load forecasting. The effectiveness of
the proposed methods is evaluated against a statistical benchmark, using multiple accuracy
metrics. The test data sets are high resolution multi-seasonal time series of electricity demand of
buildings in Belgium, Canada and the UK from private measurements and open access sources.
Both FFNN and RNN methods show competitive results on benchmarking datasets. Best
method varies depending on the accuracy metric selected. The use of cross-learning in fitting a
global RNN model has an improvement on the final accuracy.

1. Introduction
A reliable and accurate demand forecast can enhance the operation, scheduling, management
and control of energy assets on a microgrid. The forecast enables matching the electricity supply
with demand more efficiently with an outlook for the future consumption. In the context of a
microgrid, the output of the forecast facilitates new business opportunities, such as demand
response and peer-to-peer trading. On the individual building level, the non-aggregated user
behaviour shows a highly dynamic and stochastic nature making forecasting a challenging task.
Feed Forward neural networks (FFNN) are widely utilized in load forecasting, with ensemble
and cascade models particularly finding success (see e.g. [1]). Similarly, Deep learning (DL)
methods gain popularity to address this challenge due to its ability to identify relevant features
in a high-dimensional feature space. Despite of being computationally intensive, DL methods,
like recurrent neural networks (RNN), specifically Long Short-term memory (LSTM) typologies,
are becoming more accessible and gaining more attention among forecast professionals. RNN
architectures use cases exist e.g. for day-ahead forecast on real datasets both for aggregate loads
[2] and individual households [3]. In this paper we compare FFNN and RNN approaches for
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short-term load forecasting (STLF) within a 3-day and day-ahead horizons on the individual
building level. Furthermore, this paper studies the ability of networks at cross-learning (CL).
The term describes models’ ability to learn from training across multiple time series in an entire
data set. This allows to reduce the effect of uncertainty observed for individual users [4]. In
the context of a microgrid consumption time series may be available in a limited amount, e.g.
new buildings or newly-connected digital meters. In this study, we explore the benefits of CL
approach. A global model is trained across a concatenated input of entire data set and evaluated
on individual time series independently.

2. Methodology
2.1. Data sets
In this study electric load readings sourced from three locations are used. Two of the datasets,
London and British Columbia, are accessed from open access sources. The third set, Green
Energy park (GEP), is collected from private sources. A summary of key characteristics is
presented in Table 1.

Dataset London smart meter British Columbia Green Energy Park (GEP)

Country UK Canada Belgium
No. of time series 90 28 2
Frequency 30 min 1 h 15 min
Min.Length 5737 4175 15984
Max.Length 19667 30240 44448
missing values [%] 0 - 1.72 % 0 - 1.51 %, 11.93% ∗ 0.01 - 6 %

∗ Building B16 has an anomaly number of missing values

Table 1: Data Description

• London smart meter data [5]: A group of 90 buildings was selected from a bigger data set
of 5,567 London households with the corresponding records of energy consumption. The
original set contains information on social-economic demographic, conveyed with CACI
ACORN classification [6]. For overall representation of the final selection, 5 time series
were picked within each of 18 ACORN groups.

• British Columbia [7]: Hourly dataset, representing 27 residential houses in British Columbia,
Canada.

• Green Energy Park (GEP): These time series correspond to multi-yearly electricity
consumption records for 2 commercial buildings in a living-lab test site in Zelik, Brussels.

2.2. Pre-processing
Before using data in the training process, we apply a suitable pre-processing and feature
generation. The type of pre-processing applied varies slightly between the algorithms. However,
there are ideas common to both ANN and RNN approaches.

Initially, the reported missing values were filled using linear interpolation. In order to evaluate
the networks on the same temporal granularity, the measurements of non-hourly frequency were
re-sampled to hourly intervals with a summation (all values in kWh). Then, standard min-max
normalization was utilized to scale the input and output data. An advantage of min-max scaler
is that it provides uniform [0,1] scale across all features. The last step includes the train-test
split. As time-series samples are not independent, the data cannot be split randomly. The data
split follows the sequence logic. From the end of the series, half a year (= 4380 hours) is reserved
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for test set. In time-series that hold less than a full year span of data, 20% of samples from the
end of the series are reserved for test set.

2.3. Implementation
As the problem at hand is a multi-step ahead forecasting problem, a Multiple-Input Multiple-
Output (MIMO) strategy is employed. An advantage of such approach is incorporating the
inter-dependencies between time steps within the output window. Furthermore, MIMO strategy
makes it possible to avoid potential error build-up that can occur when employing the recursive
strategy, which is a sequence of one-step-ahead forecasts.

Adding calendar features boosts the network ability to learn seasonal patterns. Although
some studies take an additional step in pre-processing and deseasonalize the time series data,
according to [8], learning the seasonal patterns from calendar features becomes viable within the
network for homogeneous series which is the case of electric load of individual buildings. The
following external features were engineered:

(i) Time of day, day of year as continuous features. The features are first converted to a
fractional form in [1, 0]. Sin and Cos transformations were applied in order to preserve
cyclical properties of the features.

(ii) Day of week, one-hot encoded.

(iii) Working day ticker. This is a binary feature indicating bank holidays and weekends in the
countries of interest.

All models were developed using Tensorflow version 2.4.0, an open-source deep-learning
platform. All necessary scripts are programmed in Python. Two lagged features are added
to the input: consumption in the 72 hours and consumption in previous week for the forecasted
times.

In order to limit model overfitting, we used an early stopping technique. The models are
trained until the maximum number of training epochs is reached or the validation error grows.
A delay in number of epochs which have the validation error growing is a patience parameter.
The best epoch with smallest validation error is saved and the model is retrained on full training
data with no validation split. This is done to address an issue with split into validation and
train data, as highlighted in [9].

Non-model parameters set in the design of the architecture are referred as hyperparameters.
The hyperparameter configuration includes the following parameters: number of layers, number
of cells, learning rate, batch size and dropout rate (applicable if more than one layer). These
parameters can be tuned, to achieve the best possible result. For tuning the hyperparameters
of the two-stage FFNN model, an open-source Python library, keras-tuner, was used. Each of
the six networks included in the model were trained and tuned separately from one another.
Since the RNN training process is computationally costly, the hyperparameter optimization was
run only for GEP dataset. Therefore, the final hyperparameter configuration is sub-optimal and
based on a series of trials and domain knowledge. The loss function used for fitting the model on
the training data optimizes the mean squared error (MSE) metric. The resulted hyperparameter
configuration includes a hidden layer of 64 cells, a learning rate of 1e-3 with 1500 batch size and
no dropout rate.

2.4. Evaluation
The efficacy of the proposed algorithms needs to be assessed by comparing their results with
those of an already implemented forecasting technique. For this purpose, an Auto Regressive
Integrated Moving Average (ARIMA) with exogenous parameters (ARIMAX) model is created,
to provide the benchmark results.
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ARIMA models have been used extensively in various forecasting scenarios, not only as a
benchmark, but also, as a well-established statistical method to address time series analysis
problems. Adding exogenous parameters to the original ARIMA algorithm produces more
accurate results, since the time series’ behavior is highly dependent on external factors such
as the day of the week or if it is a working day or not.

The performance is evaluated using the Root Mean Squared Error (RMSE) and the Mean
Average Percentage Error (MAPE), described by the following equations:

RMSE =

√√√√ 1

N

N−1∑
i=0

1

nO

nO−1∑
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∣∣∣∣ (2)

where N is the number of samples in test set, n0 is the size of the horizon, i.e. number of steps
to be forecasted in each sample, and yi, ŷi the actual and forecasted value, respectively.

3. Results
The time-series of electrical load in individual households show a high degree of uncertainty,
non-linearity and anomaly days. The LSTM RNN model was trained both using individual
buildings data and globally, using the concatenated input from the entire dataset.

Figure 1 shows a small sample of the time series produced by the models in contrast with
the actual values for day-ahead and 3 days-ahead forecasting. It is observed that the forecasted
values follow the measured ones, producing fairly accurate results. ARIMAX outputs the same
results on the both day-ahead and three-days ahead horizons. Other models show a better fit
at day-ahead forecasting, since there is less uncertainty and more recent lags accessible. The
underestimation of peaks is attributed to regularization to avoid overfitting and the use of mean
squared error as a loss function. The forecast example shows that within the observed interval
RNN models output a smoother time series.

Figure 1. Time series produced by the models for day-ahead(up) and 3 days-ahead(down)
forecasting
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Table 2 summarizes the accuracy metrics for forecasts produced at day-ahead and 3 days-
ahead horizon. The results are highlighted with a gradient colour heat map. The gradient
ranges from green (least error) to red (biggest error). From the results we can conclude that
both FFNN and LSTM models show superiority over the ARIMAX benchmark in London smart
meter and British Columbia sets. In GEP dataset, consisting of only two buildings, the global
model has the highest error on 3 days-ahead scale. There, the FFNN models outperform the
RNN models on day-ahead forecast. RNN trained in a series-by-series fashion provide a better
accuracy forecast on 3 days-ahead horizon.

We see that the accuracy evaluation presents no clear-cut winner regarding accuracy of the
forecast. In terms of RMSE, RNN Global and series-specific RNN match or slightly overperform
the forecast produced by FFNN on both British Columbia and London sets. However, RNN
scores lower MAPE only on British Columbia dataset, while on London set FFNN shows better
accuracy in terms of MAPE. As noted in [10], the MAPE metric has a disadvantage of penalizing
negative errors more than positive. Due to this fact, we can conclude that RNN models tend to
underestimate more than overestimate the actual readings.

There is indication that the LSTM models benefit from learning cross-series information.
Globally trained RNN models outperform the individual RNN models, particularly in terms
of the MAPE metric. It can be seen on London Smart Meter and British Columbia datasets.
For instance, global RNN on average has a 10% better MAPE than RNN trained locally across
entire dataset. It is evident that there are private cases where the generalization power of the
global model hinders the forecasting performance. For example, the global model gives the
lowest accuracy for an ACORN-P segment, which, according to CACI [6], represents ’struggling
neighbourhoods’.

Figure 2. mean RMSE and MAPE results
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4. Conclusions
From our experiments we conclude that there is a notable difference in performance of models
between day-ahead and 3 days-ahead predicting horizons. FFNN results come near to metrics
of forecast produced by individual and global RNN, while outscoring them in terms of MAPE.

It was observed that CL method utilizing a global RNN model show competitive results.
CL methods are advantageous for applications in microgrids, as the new assets and new
measuring units can be integrated into the forecasting framework without a drop in performance.
Additionally, the training of such networks requires less time than training multiple models in
a series-by-series fashion.

The generalized global parameters may not successfully be applied to individual requirements
of outlier time series. Therefore, hybrid and ensemble type architectures show promise and need
further research for demand forecasting applications.
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Learning Modeling Reviewing Hybrid and Ensemble Methods. Lecture Notes in Networks
and Systems, 101:215–227, 2020. ISSN 23673389. doi: 10.1007/978-3-030-36841-8 21. URL
www.preprints.org.

[2] Filippo Maria Bianchi, Enrico Maiorino, Michael C Kampffmeyer, Antonello Rizzi, and
Robert Jenssen. An overview and comparative analysis of recurrent neural networks for
short term load forecasting. arXiv preprint arXiv:1705.04378, 2017.

[3] Kasun Bandara, Christoph Bergmeir, and Slawek Smyl. Forecasting across time series
databases using recurrent neural networks on groups of similar series: A clustering
approach. Expert Systems with Applications, 140, 2020. ISSN 09574174. doi:
10.1016/j.eswa.2019.112896.

[4] Artemios Anargyros Semenoglou, Evangelos Spiliotis, Spyros Makridakis, and Vassilios
Assimakopoulos. Investigating the accuracy of cross-learning time series forecasting
methods. International Journal of Forecasting, 2021. ISSN 01692070. doi:
10.1016/j.ijforecast.2020.11.009.

[5] UK Power Networks. SmartMeter Energy Consumption Data in London Households, 2015.

[6] CACI Limited. The Acorn User Guide. The Consumer Classification, 2014.

[7] Stephen Makonin. Hue: The hourly usage of energy dataset for buildings in british columbia.
Technical report, Simon Fraser University, 2018.

[8] Kasun Bandara, Christoph Bergmeir, and Slawek Smyl. Forecasting across time series
databases using recurrent neural networks on groups of similar series: A clustering approach.
arXiv, 2017. ISSN 23318422.

[9] A Suilin. Kaggle-web-traffic. https://github.com/Arturus/kaggle-web-traffic/, 2017.
Accessed: 2021-04-30.

[10] Rob J. Hyndman and Anne B. Koehler. Another look at measures of forecast
accuracy. International Journal of Forecasting, 22(4):679–688, 2006. ISSN 01692070. doi:
10.1016/j.ijforecast.2006.03.001.


